CHANGING PARADIGMS AND FUTURE CONCEPTS IN PERIPHERAL INTERVENTIONS

How Far Have We Come?

Associate Professor Ramon L. Varcoe FRACS, PhD
Sydney, Australia
Disclosure

Speaker name:
.........Ramon Varcoe..

I have the following potential conflicts of interest to report:

- Consulting Abbott, Boston, Gore, Medtronic
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s)

- I do not have any potential conflict of interest
CRITICAL LIMB ISCHAEMIA

- Multi-Level
- Tibial Involvement
- CTOs
- Calcification
Vascular Involvement in Diabetic Subjects with Ischemic Foot Ulcer: A New Morphologic Categorization of Disease Severity

L. Graziani,1,2 A. Silvestro,1 V. Bertone,2 E. Manara,3 R. Andreini,4 A. Sigala,5 R. Mingardi5 and R. De Giglio2

Table 1. Morphologic Classification of Below-The-Groin arterial lesions distribution, based on 7 Classes of progressive involvement severity

<table>
<thead>
<tr>
<th>Class</th>
<th>Angiographic Finding</th>
<th>Patients, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Isolated, one vessel tibial or peroneal artery obstruction</td>
<td>3 (1%)</td>
</tr>
<tr>
<td>2a</td>
<td>Isolated femoral/popliteal artery or two below knee arteries obstructed but with patency of one of the two tibial arteries</td>
<td>12 (3%)</td>
</tr>
<tr>
<td>2b</td>
<td>Isolated femoral/popliteal artery or two below knee tibial arteries obstructed but with patency of the peroneal artery</td>
<td>23 (5%)</td>
</tr>
<tr>
<td>3</td>
<td>Isolated, one artery occluded and multiple stenosis of tibial/peroneal and/or femoral/popliteal arteries</td>
<td>58 (14%)</td>
</tr>
<tr>
<td>4</td>
<td>Two arteries occluded and multiple stenosis of tibial/peroneal and/or femoral/popliteal vessels</td>
<td>151 (36%)</td>
</tr>
<tr>
<td>5</td>
<td>Occlusion of all tibial and peroneal arteries (below knee cross-sectional occlusion)</td>
<td>47 (11%)</td>
</tr>
<tr>
<td>6</td>
<td>Three arteries occluded and multiple stenosis of tibial/peroneal and/or femoral/popliteal arteries</td>
<td>114 (27%)</td>
</tr>
<tr>
<td>7</td>
<td>Multiple femoro-popliteal obstructions with no visible below the knee arterial segments</td>
<td>3 (1%)</td>
</tr>
</tbody>
</table>
IMPROVING OUTCOMES IN CLI
LIMB SALVAGE

TECHNICAL SUCCESS

PATENCY

WOUND CARE
TECHNICAL SUCCESS
DEDICATED CTO DEVICES
CROSSING/RE-ENTRY DEVICES
RETROGRADE TIBIAL PUNCTURES

Points:
1. Long sheath (45cm) positioned at or just below the knee
2. Multiple options for puncture site
3. Retrograde wire passage, then through wire, then track catheter, then reverse wire

ANKLE LEVEL PUNCTURES

- All 3 vessels suitable
- Useful for long tibial CTOs
- Usually sheathless with support catheter
Primary Patency

Percentage (at 12 months)

Trial

YUKON-BTK

DESTINY

ACHILLES

DES

BMS

DES

BMS

DES

PTA

81

56

85

54

78

58

P=0.004

P=0.0001

P=0.019
BIO-RESORBABLE VASCULAR SCAFFOLD
95.5%
12 months

ABSORB
BTK
12-month Primary Patency – Compared With RCTs

- **95.5% 12 months**

- ABSORB
 - BTK

YUKON. Rastan A et al. European Heart Journal 2011;32:2274-81
POBA in BTK: Restenosis and TLR rates

1. D. Scheinert, J Am Coll Cardiol 2012;60:2290–5
5. F. Liistro, TCT 2012 oral presentation
6. A. Schmidt, Catheter Cardiovasc Intervent 2010;76:1047-54
IN.PACT in BTK: Restenosis and TLR rates

3. F Liistro – TCT 2012
Drug-Eluting Balloon Versus Standard Balloon Angioplasty for Infrapopliteal Arterial Revascularization in Critical Limb Ischemia
12-Month Results From the IN.PACT DEEP Randomized Trial

- 2014, JACC
- Prospective, multicentre, RCT
- 358 Patients with BTK disease & CLI
- DEB vs PTA
- Mean LL 10-13cm
- Independent, blinded CEC
POBA in BTK: Restenosis and TLR rates

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients</th>
<th>12m Angio</th>
<th>10m Angio</th>
<th>6m Angio</th>
<th>12m Angio</th>
<th>3m Angio</th>
<th>12m Angio</th>
<th>3m Angio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHILLES [1]</td>
<td>101</td>
<td>75.4%</td>
<td>41.9%</td>
<td>16.5%</td>
<td>2.7%</td>
<td>35.6%</td>
<td>3.8%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Soder 2000 [2]</td>
<td>60</td>
<td>53.0%</td>
<td>2.7%</td>
<td>3.8%</td>
<td>2.7%</td>
<td>35.6%</td>
<td>3.8%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Bauman 2011 [3]</td>
<td>33</td>
<td>42.0%</td>
<td>40.0%</td>
<td>29.4%</td>
<td>13.0%</td>
<td>42.0%</td>
<td>5.9%</td>
<td>3.8%</td>
</tr>
<tr>
<td>DEBELUM [4]</td>
<td>11</td>
<td>74.3%</td>
<td>52.9%</td>
<td>47.0%</td>
<td>47.0%</td>
<td>29.4%</td>
<td>7.4%</td>
<td>2.7%</td>
</tr>
<tr>
<td>DEBATE BTK [5]</td>
<td>67</td>
<td>82.1%</td>
<td>74.3%</td>
<td>45.3%</td>
<td>45.3%</td>
<td>29.4%</td>
<td>7.4%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Schmidt 2010 [6]</td>
<td>58</td>
<td>69.0%</td>
<td>64.9%</td>
<td>50.0%</td>
<td>18.4%</td>
<td>69.0%</td>
<td>18.4%</td>
<td>64.9%</td>
</tr>
</tbody>
</table>

1. D.Scheinert, J Am Coll Cardiol 2012;60:2290–5
5. F.Liistro, TCT 2012 oral presentation
6. A.Schmidt, Catheter Cardiovasc Intervent 2010;76:1047-54
DCBs are not all the same

With courtesy C. I. Mena
Ex Vivo Administration of Fluorescent-Labeled PTX to Excised Porcine Artery

10% Oregon green labeled PTX incorporated into Lutonix DCB coating

Segment-to-segment variability ± 4.0 %

Lutonix coating uniformity allows uniform drug delivery
Does Drug Coating Matter?

Data obtained from two data sets. Virmani preclinical animal data on file. Animal test results may not be indicative of clinical performance. Different test methods may yield different results.*
Lutonix BTK Trial Summary

| PRIMARY ENDPOINTS | Safety at 30 days
Limb salvage & primary patency at 12 months |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF PATIENTS/SITES</td>
<td>480 patients at 55 global sites</td>
</tr>
</tbody>
</table>
| **FOLLOW-UP** | **Clinical:** 1, 6, 12, 24, and 36 Months
Duplex Ultrasound (DUS): 0–30 days, 6, 12, 24, & 36 months
Angiography in subset of patients: 12 months
Telephone: 48 and 60 Months |
| **NATIONAL PRINCIPAL INVESTIGATORS** | **Patrick Geraghty:** Washington University, St. Louis, MO
Jihad Mustapha: Metro Health Hospital, Wyoming, MI
Marianne Brodmann: Medical University Graz, Austria |
| **SPONSOR** | Lutonix Inc., Minneapolis, MN |
Inflow Treatment
If needed

PTA Pre-Dilatation
With Uncoated Balloon

Successful PTA with Outflow
Randomize 2:1

Test Arm:
Dilatation of ALL target lesions with Drug Coated Balloon

Control Arm:
Dilatation of ALL target lesions with Uncoated Balloon

Suboptimal PTA
Absence of above ankle reconstitution
>75% residual stenosis

Treat per standard practice
30 day follow-up for safety
8 Data Monitoring Committee meetings so far

273 randomized patients:
- 184 have completed 6 month follow-up
- 134 have completed 12 month follow-up

Only 11 major amputations (3% of enrolled pts) recorded

Only approved and ongoing BTK trial in the US
The Bullfrog® Micro-Infusion Device (Mercator MedSystems)
Bullfrog Device Features

• Microneedle is 34 Ga (0.007”) diameter; smaller than most suture needles, so insertion does not injure the vessel

• Balloon self-adjusts to a range of vessel diameters (2-4 mm, 3-6 mm or 4-8 mm)

• Contrast co-delivered with drug confirms real-time procedural success
CONCLUSION

• TECHNICAL SUCCESS
 – CTO devices
 – Retrograde techniques
 – Persistence

• PATENCY OPTIMISATION
 – Know your options
 – Future technology appears promising
CHANGING PARADIGMS AND FUTURE CONCEPTS IN PERIPHERAL INTERVENTIONS

How Far Have We Come?

Associate Professor Ramon L. Varcoe FRACS, PhD
Sydney, Australia