Patterns of Vessel Calcification and Clinical Relevance

Michael R. Jaff, DO
Paul and Phyllis Fireman Endowed Chair in Vascular Medicine
Massachusetts General Hospital
Professor of Medicine
Harvard Medical School
Boston, Massachusetts USA
Michael R. Jaff, D.O.
Conflicts of Interest

Consultant
- Abbott Vascular (non-compensated)
- AOPA
- Boston Scientific (non-compensated)
- Cardinal Health
- Cordis Corporation (non-compensated)
- Janacare, Inc
- Medtronic (non-compensated)
- Micell, Inc
- Novella (DSMB)
- Primacea
- Valiant
- Volcano

Board Member
- VIVA Physicians (Not For Profit 501(c) 3 Organization)
 - www.vivapvd.com
 - Intersocietal Accreditation Commission
- CBSET

Equity
- Access Closure, Inc
- Embolitech
- I.C.Sciences, Inc
- Janacare, Inc
- MC10
- Northwind Medical, Inc.
- PQ Bypass, Inc
- Primacea
- Sano V, Inc.
- Vascular Therapies, Inc

January 2016
Vascular Calcium in PAD

- Difficult to manage with any revascularization strategy
- Acute and long-term endovascular outcomes inferior when severe calcium is present
- Grading the severity of vascular calcium in peripheral arteries is subjective with no uniform grading scale...an art.
IN.PACT Global Long Lesion Imaging Cohort: Lesion/Procedural Characteristics

<table>
<thead>
<tr>
<th>Lesions (N)</th>
<th>164</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion Type:</td>
<td></td>
</tr>
<tr>
<td>de novo</td>
<td>83.2% (134/161)</td>
</tr>
<tr>
<td>restenotic (no ISR)</td>
<td>16.8% (27/161)</td>
</tr>
<tr>
<td>ISR</td>
<td>0.0% (0/161)</td>
</tr>
<tr>
<td>Lesion Length</td>
<td>26.40 ± 8.61 cm</td>
</tr>
<tr>
<td>Total Occlusions</td>
<td>60.4% (99/164)</td>
</tr>
<tr>
<td>Calcification</td>
<td>71.8% (117/163)</td>
</tr>
<tr>
<td>Severe</td>
<td>19.6% (32/163)</td>
</tr>
<tr>
<td>RVD (mm)</td>
<td>4.594 ± 0.819</td>
</tr>
<tr>
<td>Diameter Stenosis (pre-treatment)</td>
<td>90.9% ± 14.2</td>
</tr>
<tr>
<td>Dissections:</td>
<td>0</td>
</tr>
<tr>
<td>A-C</td>
<td>47.2% (76/161)</td>
</tr>
<tr>
<td>D-F</td>
<td>14.9% (24/161)</td>
</tr>
<tr>
<td>Device Success</td>
<td>99.5% (442/444)</td>
</tr>
<tr>
<td>Procedure Success</td>
<td>99.4% (155/156)</td>
</tr>
<tr>
<td>Clinical Success</td>
<td>99.4% (155/156)</td>
</tr>
<tr>
<td>Pre-dilatation</td>
<td>89.8% (141/157)</td>
</tr>
<tr>
<td>Post-dilatation</td>
<td>39.1% (61/156)</td>
</tr>
<tr>
<td>Provisional Stent</td>
<td></td>
</tr>
<tr>
<td>LL 15-25 cm:</td>
<td>40.4% (63/156)</td>
</tr>
<tr>
<td>LL > 25 cm:</td>
<td>33.3% (33/99)</td>
</tr>
<tr>
<td>52.6% (30/57)</td>
<td></td>
</tr>
</tbody>
</table>

1. Device success: successful delivery, inflation, deflation and retrieval of the intact study balloon device without burst below the RBP
2. Procedure success: residual stenosis of ≤ 50% (non-stented subjects) or ≤ 30% (stented subjects) by core lab (if core lab was not available then the site reported estimate was used)
3. Clinical success: procedural success without procedural complications (death, major target limb amputation, thrombosis of the target lesion, or TVR) prior to discharge
How Should this Lesion Be Uniformly Graded?

• Assessment method should be widely available (i.e., fluoroscopy)
• Important features of vascular Ca++ should be assessed: intimal v. medial v. mixed (combination of fluoroscopy and DSA)
• Ratio of Ca++ grade length as a % of total lesion length should be assessed: SEVERE CA++ INDEX
No Consistent and Validated Calcium Scoring System has been established

<table>
<thead>
<tr>
<th>Physician reported based on arbitrary scale (biased and not specific)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINITIVE Ca++ Trial¹</td>
</tr>
<tr>
<td>DEFINITIVE AR²</td>
</tr>
<tr>
<td>Bard Lutonix DCB</td>
</tr>
<tr>
<td>MDT Admiral DCB³</td>
</tr>
</tbody>
</table>

Published (Proposed) Ca++ Grading Scales

<table>
<thead>
<tr>
<th>Degree of Lesion Calcification – PARC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal</td>
<td><180° (one side of vessel) and less than half the total lesion length</td>
</tr>
<tr>
<td>Mild</td>
<td><180° and greater than half the total lesion length</td>
</tr>
<tr>
<td>Moderate</td>
<td>≥ 180° (both sides of vessel at same location) and less than half the total lesion length</td>
</tr>
<tr>
<td>Severe</td>
<td>>180° (both sides of the vessel at the same location) and greater than half the total lesion length</td>
</tr>
</tbody>
</table>

This proposed scale does not account for intimal vs. medial calcification patterns

Proposed Vascular Ca++ Grading Scale: PACSS

PERIPHERAL VASCULAR DISEASE

Core Curriculum

Peripheral Arterial Calcification: Prevalence, Mechanism, Detection, and Clinical Implications

Krishna J. Rocha-Singh, MD, FACC, FAHA, Thomas Zeller, MD, and Michael R. Jaff, DO, FACC, FAHA
Proposed Fluroscopy/DSA based Peripheral Arterial Calcification Scoring Systems (PACSS): Intimal and medial vessel wall calcification at the target lesion site as assessed by high intensity fluoroscopy and digital subtraction angiography (DSA) assessed in the AP projection.

Grade 0: No visible calcium at the target lesion site

Grade 1: unilateral calcification < 5cm; a) intimal calcification; b) medical calcification; c) mixed type

Grade 2: unilateral calcification ≥ 5cm; a) intimal calcification; b) medical calcification; c) mixed type

Grade 3: bilateral calcification < 5cm; a) intimal calcification; b) medical calcification; c) mixed type

Grade 4: bilateral calcification ≥ 5cm; a) intimal calcification; b) medical calcification; c) mixed type
Tips to Assessing Peripheral Artery Calcium

- Assessment best performed at the time of diagnostic arteriography
- *Medial* calcification best assessed using fluoroscopy with a contrast-filled artery
- *Intimal* calcification best assessed using a dynamic DSA/cine run
- The majority of moderate/severely calcified SFA lesions have mixed components
The REALITY Study

- Multi-center, prospective assessment of the safety and effectiveness of combined “vessel preparation” with directional atherectomy (HawkOne® /TurboHawk®) + IN.PACT Admiral® DCB in LONG and SEVERELY calcified FP lesions in 250 patients with RC 2-4 claudication.

- Angiographic & Doppler core labs will independently adjudicate PP through 12 mos. and freedom from CD-TLR through 24 mos.

- IVUS, **peripheral Ca++ grading scale validation** sub-studies, WIQ, QoL and health economic assessments.
Vascular Calcification in PAD

• A uniform grading scale is needed
 ✓ PACSS is currently being prospectively evaluated

• A validated peripheral Ca++ scoring system will allow the comparison of technologies designed to manage vascular calcium:
 ✓ Atherectomy
 ✓ Atherectomy + DCB
 ✓ BMS
 ✓ DES
Patterns of Vessel Calcification and Clinical Relevance

Michael R. Jaff, DO
Paul and Phyllis Fireman Endowed Chair in Vascular Medicine
Massachusetts General Hospital
Professor of Medicine
Harvard Medical School
Boston, Massachusetts USA