Endovascular Stenting for Palliative Treatment of Superior Vena Cava Syndrome in End-Stage Lung Cancer

I-Ming Chen, MD

Division of CardioVascular Surgery
Taipei Veterans General Hospital, Taiwan
(Live demo site in LINCAP 2014, 2016)
Disclosure

Speaker name:

Chen I-Ming

I have the following potential conflicts of interest to report:

- Consulting
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s)

✔ I do not have any potential conflict of interest
Introduction

• Superior vena cava (SVC) syndrome:

 SVC compromised

• It causes dyspnea, swelling of upper trunk, and rarely but lethal, swelling of larynx and cerebral edema

Introduction

• Etiology:
 – lung and mediastinal malignancy *compression* (80%)
 • NSCLC
 • SCLC
 • Lymphoma
 • Metastases
 – Thrombosis

• Incidence: **2-4%** in end-stage lung cancer

Rice TW et al. *Medicine (Baltimore)* 2006;85:37-42
Introduction

• The mean life expectancy after developing SVC syndrome is 6 months

• Intention to treat
 – *Alleviate symptom*
 – Treat underlying disease

Introduction

<table>
<thead>
<tr>
<th></th>
<th>Success rate</th>
<th>Symptom relieve</th>
<th>Recurrence rate</th>
<th>Life expectancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemotherapy</td>
<td>70~80%</td>
<td>1~4 weeks</td>
<td>20~50%</td>
<td></td>
</tr>
<tr>
<td>radiotherapy</td>
<td>50~80%</td>
<td>1~2 weeks</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Surgical bypass (Jugular-atrium)</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
<td>Life expectancy > 1 year</td>
</tr>
<tr>
<td>SVC stenting</td>
<td>>95%</td>
<td>1~3 days</td>
<td>0~40%</td>
<td></td>
</tr>
</tbody>
</table>

Rowell NP et al. Clin Oncol (R Coll Radiol) 2002; 14:338
SVC stent for SVC syndrome in VGHTPE

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>58.4 (37-76)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>12</td>
</tr>
<tr>
<td>Female</td>
<td>0</td>
</tr>
<tr>
<td>Cause of Superior Vena Cava syndrome</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>6</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>1</td>
</tr>
<tr>
<td>Large cell carcinoma</td>
<td>2</td>
</tr>
<tr>
<td>Small cell lung cancer</td>
<td>3</td>
</tr>
<tr>
<td>Previous treatment</td>
<td></td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>7</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>12</td>
</tr>
<tr>
<td>Duration of Superior Vena Cava syndrome from diagnosis (months)</td>
<td>20.3 (1-53)</td>
</tr>
<tr>
<td>Stenosis site</td>
<td></td>
</tr>
<tr>
<td>SVC</td>
<td>10</td>
</tr>
<tr>
<td>SVC + Right internal jugular vein</td>
<td>1</td>
</tr>
<tr>
<td>SVC + Right internal jugular vein + Innominate vein</td>
<td>1</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>5</td>
</tr>
<tr>
<td>Previous port-A insertion</td>
<td>2</td>
</tr>
</tbody>
</table>

Procedure and outcomes

<table>
<thead>
<tr>
<th>Approach site</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right internal jugular vein</td>
<td>1</td>
</tr>
<tr>
<td>Right common femoral vein</td>
<td>11</td>
</tr>
<tr>
<td>Anesthesia</td>
<td></td>
</tr>
<tr>
<td>General anesthesia</td>
<td>3</td>
</tr>
<tr>
<td>Local anesthesia</td>
<td>9</td>
</tr>
<tr>
<td>Pre-dilatation</td>
<td>3</td>
</tr>
<tr>
<td>Post-dilatation</td>
<td>12</td>
</tr>
<tr>
<td>Thrombolytic therapy with urokinase</td>
<td>3</td>
</tr>
<tr>
<td>Number of stent</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Post-operative anti-thrombosis therapy</td>
<td></td>
</tr>
<tr>
<td>Warfarin</td>
<td>2</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>10</td>
</tr>
<tr>
<td>Follow-up (months)</td>
<td>11.5 (0.3-17)</td>
</tr>
<tr>
<td>Symptoms relieved</td>
<td>12</td>
</tr>
</tbody>
</table>

6-month primary patency rate 91.67%

6-month secondary patency rate 100%

Pre-stenting SVC narrowest diameter 2.16 mm (0~5.5mm)

Post-stenting SVC narrowest diameter 11.17 mm (8~13.5mm)

Stent thrombosis

- **Total** 1
- **Partial** 1
Tumor mass
Wall stent deployment (20 x 55mm)

Post dilatation (XXL 18 x 40mm)

Final venography
A 55-year-old male presented with right arm swelling and visible superficial vein over neck. Diagnosed of lung adenocarcinoma.

Intra-operative venogram revealed compressed SVC and much thrombus formation.
Suction by guiding catheter and then urokinase infusion (bolus 4000U/kg and retention for 10 mins)
Partial thrombosis

Stent compression by tumor

Total thrombosis

Secondary intervention with thrombus suction, thrombolysis and ballooning
Discussion

• The aim of treating SVC syndrome is to alleviate patient’s discomfort

• The traditional chemotherapy and radiotherapy take times (weeks to months), with recurrence rate about 20-50%
Discussion

- SVC stenting has **technical successful rate** over 95%, **clinical successful rate** over 90%.

- The procedure could be carried out under **local anesthesia**.

- The symptoms improved **1-3 days** later.

- Intolerance to thrombolytic therapy or anticoagulation may be the only contraindication.
Discussion

• Major complication such as stent migration, SVC rupture, cardiac tamponade, massive pulmonary embolism and hemorrhage were extremely rare.

• The incidence of in-stent stenosis or thrombosis was 10-40%, could be managed by secondary intervention.
Discussion

• Limited prospective studies comparing stenting and other treatments, without large randomized trial

• Limited series reported

• SVC stenting has been advocated as the first line treatment.
Conclusion

Stenting of SVC is a safe alternative treatment for SVC syndrome.

Stenting of SVC may be considered as first line palliation to improve the patient’s quality of life.

Need more cases and RCT.
Conclusion

Stenting of SVC is a safe alternative treatment for SVC syndrome.

Stenting of SVC may be considered as first line palliation to improve the patient’s quality of life.

Need more cases and RCT

Thanks for your attention!
Endovascular Stenting for Palliative Treatment of Superior Vena Cava Syndrome in End-Stage Lung Cancer

I-Ming Chen, MD

Division of CardioVascular Surgery
Taipei Veterans General Hospital, Taiwan
(Live demo site in LINCAP 2014, 2016)