How should studies be designed to evaluate new carotid protection devices and stents?

William A. Gray, MD
Lankenau Heart Institute/Main Line Health
Wynnewood, PA
USA
A good---no, a great---question! There is no “one” answer

• The answer will depend on:
 – Goals of the new technology
 • “Me too” vs. new/improved
 • Regulatory approval?
 – Chosen comparator
 • CEA
 • Pre-existing class of CAS devices: yes or no
 • Pre-existing CAS outcomes
 – Capacity for duration, size and cost of the trial
What are the options for study designs?

- **Trial types**
 - RCT vs. CEA (or CAS)
 - Single-arm vs. a performance goal (PG)

- **Primary endpoints**
 - Clinical: death/stroke/MI (DSMI)
 - Composite Morbidity Measure (CMM)
 - Surrogate: MR-DWI or neuropsychometric testing

- **Study populations**
 - Standard or high-risk for CEA
 - Symptomatic and/or asymptomatic
Generic considerations

• The event rates of interest (death/stroke) for a new device in carotid intervention---CEA or CAS---are very low
 – This means that if the goal is to prove superiority of a new device, a large (several thousand) trial is necessary
 • Even with inclusion of only symptomatic patients, it is difficult to adequately “enrich” the population to increase events and lower trial numbers

• Experimental environment is key (willingness to change practice patterns for the study of new device)
Considerations: Trial type

• RCT vs. CEA (or CAS)
 – Highest level of evidence
 – Typically reserved for proof of superiority
 – If done on clinical outcomes basis are large, expensive, lengthy trials

• Single-arm vs. a performance goal (PG)
 – Most common
 – Non-inferiority with a PG with upper boundary of 95% CI
 – Much smaller and shorter study, even with clinical endpoints
Considerations: primary endpoints

• Clinical
 – Death/stroke for new devices most relevant (MI less so), but for US regulatory purposes it will be a composite of all 3 endpoints. If a comparison to CEA, all are important
 • FDA-driven standard for new devices
 • The composite also helps with increasing the event rate and therefore reduces the size of the trial
Considerations: primary endpoints

- Surrogate
 - MR-DWI is a very sensitive marker of embolic activity, represents cellular edema
 - A reasonable set of data exist for indirect comparison
 - Direct (randomized) comparison does not require nearly the number of patients as clinical endpoint trial, especially if “treatment effect” is substantial (e.g., device results in significant reduction of embolic activity)
 - Neuropsychometric (cognitive) testing is too “blunt” a tool to distinguish outcomes
Considerations: Secondary endpoints

• Composite Morbidity Measure (CMM)
 • cranial/peripheral nerve injury
 • vascular injury
 • non-cerebral bleeding
 • wound complications related to the neck incision/femoral puncture site
 • anesthetic complications
Considerations: study population

- High vs. standard CEA risk
 - PG event rates are higher in high-risk patients = smaller trial
- Symptomatic and/or asymptomatic
 - If randomized trial, can be any combination
 - If PG trial, can also be any combination since the PG will be adjusted for the final mix of patients
 - Practical point: there are many more potential asymptomatic patients for inclusion
Conclusion

• For new devices seeking regulatory approval:
 – a single-arm in high-surgical risk patients in a mixed symptom population using an established clinical PG

• For new devices seeking to demonstrate greater procedural effectiveness
 – Single-arm or randomized in any population of patients using surrogate endpoint of MR-DWI
 – clinical endpoints will also need to be collected/compared, but the trial does not need to be powered to show differences there
Attend live, online

Visit our booth!

www.VIVAPhysicians.org
How should studies be designed to evaluate new carotid protection devices and stents?

William A. Gray, MD
Lankenau Heart Institute/Main Line Health
Wynnewood, PA
USA