A Place for Selfexpanding Stents and DCBs in the Treatment of the SFA

A. Schmidt, MD
Department for Interventional Angiology
University Hospital Leipzig
Germany
Potential conflicts of interest

Speaker’s name: Andrej Schmidt

✓ I have the following potential conflicts of interest to report:

Consulting:
Abbott, Cook, ReFlow Medical, Spectranetics, Upstream Peripheral

Speakers honorarium:
Boston Scientific, Cordis, C.R.BARD, Intactvascular, Medtronic
This presentation reflects the techniques, approaches and opinions of the individual presenter(s). This Cordis sponsored presentation is not intended to be used as a training guide. Before using any medical device, review all relevant package inserts with particular attention to the indications, contraindications, warnings and precautions, and steps for use of the device(s).

Dr. Schmidt is compensated by and presenting on behalf of Cordis, and must present information in accordance with applicable regulatory requirements.
Endovascular Treatment of Femoropopliteal Lesions Today

Drug-coated balloons became an indispensable part of the treatment of fempop-lesions

DCBs are used to reduce or avoid stenting
Case from the Thunder-Trial (Tepe et al. NEJM 2008)

2 PTX-coated balloons; 5 x 100 mm and 4 x 40 mm

6 months 18 months
DCB for Femoropopliteal Lesions „Leave Nothing Behind“

<table>
<thead>
<tr>
<th></th>
<th>N limbs</th>
<th>Stent-rate</th>
<th>Lesion-length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thunder-Trial</td>
<td>42</td>
<td>4.0 %</td>
<td>7.5 cm</td>
</tr>
<tr>
<td>Tepe et al. 2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italian Registry</td>
<td>105</td>
<td>12.3 %</td>
<td>7.6 cm</td>
</tr>
<tr>
<td>Micari et al. 2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In.Pact SFA</td>
<td>220</td>
<td>7.3 %</td>
<td>8.9 cm</td>
</tr>
<tr>
<td>Tepe et al. 2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levant II</td>
<td>316</td>
<td>2.5 %</td>
<td>6.3 cm</td>
</tr>
<tr>
<td>Rosenfield et al. 2015</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In.Pact Global Study: DCBs for Treatment of Real-World Fem-Pop Lesions (n=1538)

- Long-lesion subgroup (> 15cm) n = 164

- Lesion-length 26.4 ± 8.6 cm

- Provisional stenting 40.4 %
Spot-Stenting after DCB-Treatment

After DCB

29 months FU

stent
Will DCBs work in Calcified SFA-Lesions?

- 60 pts. With SFA-lesions
- CT-angio before DEB
- 1-year LLL

F. Fanelli et al., *Cardiovasc Intervent Radiol* 2014
Will DCBs work in Calcified SFA-Lesions?

F. Fanelli et al., *Cardiovasc Intervent Radiol* 2014

Conclusion: Calcium represents a barrier to optimal drug absorption.
Rate of dissections and residual stenosis is higher in calcified lesions.
2-Year Results of DCBs in the SFA

2-Year Results from the In.Pact SFA-Trial

N lesions: 220
Lesion length: 8.9 cm

Laird et al. JACC 2015
2-year results DCB in complex SFA-Lesions

- 288 fempop-lesions
- Lesion-length 24.0 cm
- In.Pact DCB
 + BMS in 23.3 %

Kaplan-Meier primary patency

- 1 year 79.2 %
- 2 years 55.4 %

Days FU
0 180 360 540 720
N at risk
288 246 209 157 103

Schmidt et al. *JACC Intervent* in press
Retrospective Comparison of different Treatment-Modalities of the SFA

Restenosis rates up to 40 months after treatment

<table>
<thead>
<tr>
<th>N Extremitites</th>
<th>Propensity matched cohorts</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMS</td>
<td>432</td>
</tr>
<tr>
<td>DCB</td>
<td>390</td>
</tr>
</tbody>
</table>

284
Drug-Coated Balloon vs. Bare Metal Stent

Survival probability: primary patency

Lesion length (mm):
DCB 171 ± 108
BMS 159 ± 114

S. Steiner, submitted
Can results of DCBs or BMS be improved if used in combination?

DCB + BMS vs. BMS

DEBATE-SFA trial:
- Prospective, randomized
- 110 fempop lesions
- BMS (Maris) vs.
- BMS (Maris) + DEB

Liistro et al. *JACC Interv* 2013
Summary

DCBs can not be re-called from the treatment of SFA-lesions

Stents are indispensable, especially for the treatment of more complex fem-pop lesions

In practice, there is a lot of space for the combination of DCB and BMS.
A Place for Selfexpanding Stents and DCBs in the Treatment of the SFA

A. Schmidt, MD

Department for Interventional Angiology
University Hospital Leipzig
Germany