Photoablation and DCB in in-stent restenosis

Craig M. Walker, MD, FACC, FACP

Clinical Professor of Medicine
Tulane University School of Medicine
New Orleans, LA

Clinical Professor of Medicine
LSU School of Medicine
New Orleans, LA

Founder, President, and Medical Director
Cardiovascular Institute of the South
Houma, LA
Disclosure

Speaker name:

I have the following potential conflicts of interest to report:

- Consulting ✓
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s)

- I do not have any potential conflict of interest
• Single Center US Experience Registry in treating very long segment highly symptomatic chronic SFA total in-stent occlusions.
Inclusion Criteria

- Documented chronic total occlusion (≥2 mos) of SFA stents ≥ 18 cm
- Rutherford 3 or 4 classification (no mild claudicants or established tissue loss)
- At least one patent run-off vessel
- No type 3 or 4 stent fractures
- Lesions crossable
- TIMI 3 flow before DEB
Background: fem-pop ISR

ISR vs. de-novo: different pattern, higher restenosis burden

Initial (de-novo) lesion

Dense rubbery cap of smooth muscle cells

Hydrated collagen matrix (watery sponge; 60-80% of NIH volume)

Calcium: rare

Thrombus: can be present, but typically a small part of the total volume

Recanalization, Debunking and Plaque Modification

Photochemical:
- Molecular bond break

Photothermal
- Thermal energy

Photomechanical
- Kinetic energy

- Recanalization (Pilot Channel)
- Plaque vaporization
- Limited embolization
- No moving blades
- Only FDA approved Atherectomy for ISR
Laser in long fem-pop ISR

EXCITE ISR RCT
Laser + PTA vs. PTA in fem-pop ISR
- 250 Patients (169 ELA+PTA vs. 81 PTA)
- Occlusive ISR: 30.5% vs. 36.8%
- Mean ISR length: ~19 cm

Laser + PTA better than PTA, proportionally better in longer lesions

Primary Patency

Laser + PTA vs. PTA @ 6-month: 71.1% vs. 56.4% (p=0.004)

Laser + DCB pre-Clinical Insights

Reduced % stenosis and intimal thickness with Laser+DCB vs. DCB alone at 28 days in pre-clinical ISR model

Rabbit model of (carotid) CTO ISR treated by Laser + DCB vs. DCB alone
Laser + DCB in ISR: Clinical Insights

- SFA-ISR case series (N=14) ~13 cm, treated with Laser+DCB
- Time to first TLR (after PTA) = 8 months

Reduced TLR rate and time-to-TLR vs. initial PTA treatment
1 TLR (7%) at 3 years

Laser+DCB vs. DCB in long, occlusive ISR: RCT

12-month Primary Patency
ELA + DCB vs. DCB:
66.7% vs. 37.5% (p=0.01)

Significant reduction of TLR and MAE and improved wound healing with Laser + DCB vs. DCB alone at 12 months

- Single center randomized trial (Laser+DCB vs. DCB)
- N=48; CLI: 100%; Diabetes: 100%
- Occlusive ISR (Tosaka III): 100%
- mean ISR treated length: 22.4±9.4 cm (Laser + DCB) vs. 25.9±8.7 cm (DCB)

Planned Follow-up Evaluation

- Pre procedural ABI, Duplex, Rutherford
- 1 month clinical evaluation
- 6 month clinical evaluation, ABI, Art Duplex
- 1 yr clinical evaluation, ABI, Art Duplex
- Yearly clinical evaluation, ABI, Art Duplex
Treatment Protocol

- All SFA treatment via contralateral approach to avoid prolonged compression of treated artery.
- Following angiography lesion crossed and treated with Turbo-Elite laser catheter (2 passes at 1mm/sec advancement rate).
- Repeat angiography.
- PTA with non-compliant balloon to reference vessel size for 2 minutes).
- Repeat Angio.
- Drug-Eluting PTA of entire treated segment avoiding treatment miss (Two minute inflations).
- Angiography.
24 patients treated between Feb 2015 – June 2015

- 22 Rutherford 3
- 2 Rutherford 4 (Both had severe Profunda disease).
- Lesion length 18cm – 43cm (mean 28cm)
- Pt age 48 - 78
- 19 males 5 females
- Reference vessel diameter
 - 4mm 2 pts
 - 5mm 19 pts
 - 6mm 3 pts
Baseline hemodynamics

• ABI 0.3 – 0.76 (Mean .52)
• Duplex – Totally occluded segment
Acute Treatment Outcomes

• All lesions were crossed (in 3 cases laser step by step approach was required)
• Following laser atherectomy angiography disclosed a patent channel with TIMI 3 flow in 23/24. One pt had TIMI 2 flow treated successfully with local 2B/3A administration
• Following intial PTA 22/24 widely patent with TIMI 3 flow. 2 had TIMI 1 flow treated successfully with local 2B/3A
• Following DEB all 24 had excellent angiographic result with TIMI 3 flow.
Follow-up

• 24 patients treated within time period to assess 6 month outcomes
• 2 patients did not return for visits or follow-up but were reached by phone (Patients stated they were a symptomatic)
• 1 patient could not be reached
• 21 patients returned to office for full evaluation
Clinical findings in 21 patients at 6 mos

- 18 pts Rutherford 0
- 2 pts Rutherford 2
- 1 pt Rutherford 3
Objective findings at 6 mos

- ABI .52 – 1.3 (Average .92)
- Art Duplex
 - 19 patients, no significant stenosis PSVR <2
 - 1 patient, total SFA occlusion (had stopped anti-platelet drugs)
 - 1 patient, had several high grade lesions
Major Adverse Events at 6 mos

• 1 pt had clinically driven TLR → Laser + DEB with good initial result
• No deaths or CVA
• No major bleeding requiring transfusion
Conclusion

• The treatment of long-segment SFA in-stent occlusions is challenging and has been historically associated with poor patency. Laser de-bulking followed by DEB is feasible. These initial outcomes are encouraging but longer-term evaluation is needed.
Photoablation and DCB in in-stent restenosis

Craig M. Walker, MD, FACC, FACP

Clinical Professor of Medicine
Tulane University School of Medicine
New Orleans, LA

Clinical Professor of Medicine
LSU School of Medicine
New Orleans, LA

Founder, President, and Medical Director
Cardiovascular Institute of the South
Houma, LA