Techniques for thrombus removal in acute DVT

Benefits of an Endovascular Approach for Rapid Flow Restoration in DVT

Michael K. W. Lichtenberg, MD, FESC
Vascular Centre Arnsberg, Germany
Disclosure

Speaker name:

Michael Lichtenberg

I have the following potential conflicts of interest to report:

- [x] Consulting (CR Bard, Veniti, Volcano, Biotronik, Terumo, Boston, Straub Medical, Veryan, TVA medical, Spectranetics, Cook)
- [] Employment in industry
- [] Stockholder of a healthcare company
- [] Owner of a healthcare company
- [] Other(s)

I do not have any potential conflict of interest
Indication for proximal venous thrombectomy

- 23 y female patient: Young and active patient descending ileofemoral thrombosis - May-Thurner Syndrome
- 65 y male patient: Phlegmasia, descending IVC thrombosis - Bowel cancer
- 80 y male patient: Stenosis of right iliac vein With thrombus - Lymphocele compression
Proactive Endovascular Treatment

• Eliminates the thrombus
• Early treatment increases probability of
 – Maintaining normal valve function
 – Maintaining vein function
• Decreases risk of post-thrombotic syndrome
Venous Thrombus Treatment Options: Proactive Endovascular Treatment

- Anticoagulation & Compression Stockings only
- Catheter Directed Thrombolysis (CDT)
 - Enhanced CDT (eg, ultrasound)
- Mechanical Thrombectomy
- Pharmacomechanical Thrombectomy (PMT)
Enden T, et al: CaVenT Study
– Follow-Up 24 months:
– Number needed to treat: 7

<table>
<thead>
<tr>
<th></th>
<th>Additional catheter-directed thrombolysis (n=90)</th>
<th>Standard treatment only (n=99)</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>% (95% CI)</td>
<td>n</td>
</tr>
<tr>
<td>Post-thrombotic syndrome at 24 months†</td>
<td>37</td>
<td>41.1% (31.5–51.4)</td>
<td>55</td>
</tr>
<tr>
<td>Iliofemoral patency at 6 months†‡</td>
<td>58</td>
<td>65.9% (55.5–75.0)</td>
<td>45</td>
</tr>
<tr>
<td>Post-thrombotic syndrome at 6 months§</td>
<td>27</td>
<td>30.3% (21.8–40.5)</td>
<td>32</td>
</tr>
</tbody>
</table>

Post-thrombotic syndrome defined as Villalta score of 5 points or higher. *χ² test. †Co-primary outcomes. ‡Five patients had inconclusive patency assessments and one was lost to follow-up at 6 months. §Secondary outcome.

Table 2: Short-term and long-term outcomes

22 bleeding complications
All patients with patent veins and normal valve function showed no sign of dermal pigmentation, ulceration or venous claudication at follow-up.
Catheter-Directed Thrombolysis (CDT)

Advantages
- Technologically simple
- Minimally invasive
- Resolves thrombus
- Low equipment expense

Limitations
- Extensive exposure to thrombolytics
- Extended ICU stay
- Post-treatment care can be complicated
- Logistically challenging (ICU, Labs, Nursing)
- Requires specialized skills
- Multiple visits to the procedure lab

Endovascular placement of infusion catheter into affected area
Thrombolytic drug migrates into clot
Indication for proximal venous thrombectomy

23 y female patient
Descending ileofemoral thrombosis

65 y male patient
Phlegmasia, descending IVC thrombosis

80 y male patient
Stenosis of right iliac vein With thrombus

Young and active patient

May-Thurner Syndrome

Bowel cancer

Lymphocele compression
Early Clot Removal
Many Choices – None Perfect!

EKOS® Peripheral Infusion System

Trellis™ System

AngioJet®

Aspirex® (Rotational thrombectomy)

Indigo System ® (Penumbra)

6 – 10 French
CDT vs PMT Results: Lin et al

“When compared to CDT, [PMT] provides similar treatment success with reduced ICU, total hospital length of stay, and hospital costs”

<table>
<thead>
<tr>
<th></th>
<th>PMT (N=52 limbs)</th>
<th>CDT (N=46 limbs)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete thrombus removal</td>
<td>75%</td>
<td>70%</td>
<td>NS</td>
</tr>
<tr>
<td>Partial success (residual thrombus)</td>
<td>25%</td>
<td>30%</td>
<td>NS</td>
</tr>
<tr>
<td>Immediate clinical improvement</td>
<td>81%</td>
<td>72%</td>
<td>NS</td>
</tr>
<tr>
<td>Hemorrhagic complication</td>
<td>4%</td>
<td>6%</td>
<td>NS</td>
</tr>
<tr>
<td>PRBC transfusion (U)</td>
<td>0.2±0.3</td>
<td>1.2±0.7</td>
<td><.05</td>
</tr>
<tr>
<td>No. of venograms</td>
<td>0.4±0.2</td>
<td>2.5±0.7</td>
<td><.001</td>
</tr>
<tr>
<td>Mean ICU stay (days)</td>
<td>0.6±0.3</td>
<td>2.4±1.2</td>
<td><.04</td>
</tr>
<tr>
<td>Overall hospital length of stay (days)</td>
<td>4.6±1.3</td>
<td>8.4±2.3</td>
<td><.02</td>
</tr>
</tbody>
</table>

*a decrease in pain/swelling within 24 h

- PMT and CDT groups had similar treatment effectiveness and complication rates
- Significantly reduced number of venograms, mean ICU and overall hospital stay duration for PMT vs CDT
- 18 h CDT thrombolytic infusion time vs 76 min PMT procedure time

CDT, catheter-directed thrombolysis; ICU, intensive care unit; PMT, pharmacomechanical thrombectomy; PRBC, packed red blood cell
PEARL Comparison: Treatment of Lower Extremity DVT

<table>
<thead>
<tr>
<th></th>
<th>PEARL*</th>
<th>Venous Registry†</th>
<th>CaVenT‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CDT</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Onset of DVT Symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td>67% (≤14 days)</td>
<td>66% (≤10 Days)</td>
<td>100% ≤21 days</td>
</tr>
<tr>
<td>Chronic</td>
<td>33% (>14 days)</td>
<td>16% (>10 Days)</td>
<td>NA</td>
</tr>
<tr>
<td>Acute & Chronic</td>
<td>NA</td>
<td>19%</td>
<td>NA</td>
</tr>
<tr>
<td>Primary Lytic</td>
<td>TPA</td>
<td>Urokinase</td>
<td>TPA</td>
</tr>
<tr>
<td>CDT Drip Times (mean)</td>
<td>17 hrs</td>
<td>48 hrs</td>
<td>57.6 hrs (2.4 days)</td>
</tr>
<tr>
<td>Procedure Times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDT (N=29)</td>
<td>40.9 hrs</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>CDT+PPS/RL (N=172)</td>
<td>22.0 hrs</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PPS/RL (N=115)</td>
<td>2.0 hrs</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Bleeding Complications</td>
<td>4.5% (major & minor combined)</td>
<td>11% (major); 16% (minor)</td>
<td>22% (major & minor combined)</td>
</tr>
</tbody>
</table>

†Mewissen MW, Seabrook GR. Radiology 1999:211:39-49
ATTRACTION Trial (ongoing)

Acute Venous Thrombosis: Thrombus Removal with Adjunctive Catheter-Directed Thrombolysis

- Comparative effectiveness study
- NHLBI-funded, Phase III, open-label, multicenter RCT
- Objective:
 - Determine if the initial use of adjunctive Pharmacomechanical Catheter Directed Thrombolysis (PCDT) in symptomatic patients with proximal deep vein thrombosis (DVT) reduces the occurrence of Post-Thrombotic Syndrome (PTS) over 24 months follow-up
- PCDT + standard therapy vs standard therapy alone
- Study Drug is recombinant tPA (IND 103462)
- 692 patients with symptomatic, acute proximal DVT
Pure mechanical approach

Aspirex® / Indigo®
- Pure mechanical thrombectomy, no thrombolytics
- Age of thrombus not so relevant
- Chance to finish in the Angiolab
- No RCT date, only registry data

EKOS®, Trellis®, Angiojet®
- Time consuming
- Additional thrombolytics
- Bleeding risks
- Re-angio after finishing treatment for stent placement etc. (EKOS)
- Organized thrombus > 4 weeks = possible ineffectiveness
- Additional ICU stay in EKOS
- RCT data for EKOS and Angiojet
Two center retrospective data analysis for DVT thrombectomy with the Aspirex® catheter

43 Aspirex thrombectomy procedures for iliofemoral DVT

Technical success analysis
Safety analysis
21 y, female, descending DVT in May – Thurner syndrome. Transpopliteal access, 8 F Aspirex®
Ileofemoral DVT therapy with Aspirex catheter

- May-Thurner syndrom: 43.1 years, 66 % female
- Cancer patients with more phlegmasia symptoms
- Duration of symptoms: 1 day – 3 months
- Hemodynamic technical success in cath lab with Aspirex and stent implantation: 97 % (42/43 patients)
- No prolonged lytic therapy
- Stent rate 100 % in Arnsberg patients / 95 % Rostock
- Stent rate 1,25 / patient
- Complications: No bleeding, PE
 - 2 small perforations in the CIV stent
 - 1 wire loss snared
Clinical follow-up study with the ASPIREX®S Endovascular System to investigate the safety and effectiveness in the treatment of DVT patients and special patient groups

<table>
<thead>
<tr>
<th>STUDY DESIGN</th>
<th>Open, multicentric, international, prospective, post-market clinical follow-up study</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF SUBJECTS</td>
<td>In total: up to 120</td>
</tr>
</tbody>
</table>

Dr. med. Thomas Heller
Institut für Diagnostische und Interventionelle Radiologie
Zentrum für Radiologie
Universitätsklinik Rostock
Schillingallee 35
18057 Rostock

Dr. med. Michael Lichtenberg
Klinik für Angiologie
Klinikum Arnsberg
Goethestr. 15
59755 Arnsberg

Dr. Gerard J. O’Sullivan, Galway
University Hospitals, Newcastle Road, Galway, H91 YR71, Ireland

Inclusion criteria:
Acute thrombotic or thromboembolic occlusion (onset of pain < 14 days)

FU: up to 24 months

Endpoints:
Assessment of the effectiveness and safety of the ASPIREX®S catheter
MAE, QoL, CEAP, VCSS

<table>
<thead>
<tr>
<th>Planned Start of Clinical Phase</th>
<th>Nov 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned End of Recruitment</td>
<td>Oct 2016</td>
</tr>
<tr>
<td>Planned End of Clinical Phase</td>
<td>Apr 2017</td>
</tr>
<tr>
<td>Planned Availability of Draft Final Report</td>
<td>Jul 2017</td>
</tr>
</tbody>
</table>
Conclusion

DVT thrombectomy

- Is effective in venous thrombus removal
 - Even in more organized thrombus
- Restores vein patency in upper and lower limb
- Preserves valvular function
- Has low risk and less side effects with PMT
 - No ICU stay
 - „End it in the Angiolab“
- PMT will be the standard treatment
THANK YOU FOR YOUR ATTENTION
Techniques for thrombus removal in acute DVT

Benefits of an Endovascular Approach for Rapid Flow Restoration in DVT

Michael K. W. Lichtenberg, MD, FESC
Vascular Centre Arnsberg, Germany