Type I and II endoleak management

Marcus Treitl, MD, EBIR
Disclosure

Speaker name:

Marcus Treitl

I have the following potential conflicts of interest to report:

✔ Consulting: Medtronic, Abbott, Endoscout, C4 biomedical
Challenges of EL embolization

• Neighbourhood to vital structures
• Endoleaks have inflow and outflow ➔ risk of non-target embolization (e.g. ischemic colitis / spinal ischemia)
• Large and irregular cavities to fill
 – Often larger than they seem in CT scan!!
• Sometimes difficult access / complex anatomy
• High blood flow velocities / turbulent flow
Embolization of Endoleaks: Which embolic agent?

- **Coils**
 - Broadly available, easy, safe
 - Unable to fill complex endoleak cavities completely
 - Recanalization, limited control

- **Thrombin**
 - Broadly available, easy
 - Requires experience, limited control, high risk of non-target embolization
 - Highest rates of recanalization

- **Cyanoacrylate glue**
 - Lower cost
 - Requires even more experience, risk of catheter encasement
 - High rates of recanalization, limited availability
Why Onyx as embolic for endoleaks?

- **Liquid embolic agent**
 - Excellent visualization even in CT fluoro
 - Flow directed
 - Expansion of embolic cast follows blood flow
 - Different viscosities
 - Even in high-flow conditions
 - Slowly hardening embolic agent
 - Shapeable, fills endoleak cavity completely
 - Excellent control
 - Stop of injection = Stop of embolization
- Compatible with ePTFE
- Very low recanalization rate
- Lower risk of catheter occlusion or encasement
Drawback of the standard formula

- Tantalum for radiopacification
 - strong CT beam hardening artifacts
 - Metallic foreign body in radiography
- Onyx™ 34L
 - Less tantalum, less streak artifacts on CT
Type 1 endoleaks: insufficient sealing at the landing zones

- Systolic blood pressure in aneurysm sack supposedly high risk for growth / rupture

Treatment options:
- Repeat stenting / stent-grafting / ballooning / endostapling
 - in case of insufficient landing zone / stent disconnection
- Endovascular embolization:
 - During or post EVAR
 - Type 1 endoleaks: insufficient sealing at the landing zones
Avoid combination of coils and Onyx to fill large endoleak cavities:
- Coils will prevent Onyx from filling the endoleak cavity completely
 ➢ High risk of re-perfusion!
CTA prior to embolization

CTA after the embolization

9/15
Type 2 endoleaks: reverse blood flow in side branches

- **Typical findings:**
 - Fed by inferior mesenteric artery
 - Fed by lumbar arteries via ilio-iliaic artery
Type 2 endoleaks: treatment strategies

• **Follow-up surveillance**
 – as long as there is no growth of the aneurysm sack
 • 40% occlude spontaneously
 – 2 potential treatment patterns
 • Trans-arterial via superficial mesenteric artery / hypogastric artery
 – can be complex
 – reaching the endoleak cavity essential
 » Otherwise high recurrence rate!
 • Trans-lumbar direct puncture
 – e.g. CT-guided
Type 2 endoleak following EVAR
Type 2 endoleak, fed by lumbar arteries.

Introduction of microcatheter into catheter needle after withdrawal of steel core by use of Y-adaptor.
Meta-Analysis:

Sidlof DA, et al. 2013

Table 3: Outcomes of translumbar embolizations to treat type II endoleaks after endovascular repair

<table>
<thead>
<tr>
<th>Reference</th>
<th>No. of interventions</th>
<th>Clinical success</th>
<th>Persistent or recurrent leak</th>
<th>Secondary reinterventions</th>
<th>Sac decreased or stable</th>
<th>Complications</th>
<th>Conversion</th>
<th>Rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stavropoulos et al.</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Martin et al.</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>n.s.</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rial et al.</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Steinmetz et al.</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Baum et al.</td>
<td>13</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massis et al.</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Follow-Up – 21.7M

- 28.5% unsuccessful
- Trans-lumbar > Trans-arterial
- 81% vs. 62.5%, p = 0.024
- Re-interventions in 16.4%

Table 4: Outcomes of transarterial embolizations to treat type II endoleaks after endovascular repair

<table>
<thead>
<tr>
<th>Reference</th>
<th>No. of interventions</th>
<th>Clinical success</th>
<th>Persistent leak</th>
<th>Secondary reinterventions</th>
<th>Sac decreased or stable</th>
<th>Complications</th>
<th>Conversion</th>
<th>Rupture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheehan et al.</td>
<td>19</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td>7 of 28*</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Kasirajan et al.</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>Severe buttock claudication</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Haulon et al.</td>
<td>18</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>18</td>
<td>Renal dysfunction</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solis et al.</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>Mesenteric thrombosis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Faries et al.</td>
<td>16</td>
<td>14</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>MI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Renal failure</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHF</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minor</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Baum et al.</td>
<td>20</td>
<td>3</td>
<td>16</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Massis et al.</td>
<td>29</td>
<td>17</td>
<td>12</td>
<td>12</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Follow-Up – 24.5M

*Includes data from type I endoleaks. MI, myocardial infarction; CHF, congestive heart failure.

- 51 pat. w type 2 EL, 65 interventions
 - 17 Onyx (trans-lumbar direct puncture)
 - 48 Non-Onyx embolizations: coiling, glue, etc.
 - Follow-up 13.7 mths

- Long term success:
 - 20% multiple interventions
- Onyx: significantly better long term success:
 - 91% vs. 23%, p < .001

Table V. Multivariable logistic regression of long-term interventional success of initial secondary intervention

<table>
<thead>
<tr>
<th></th>
<th>OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onyx glue</td>
<td>59.61</td>
<td>4.78-742.73</td>
<td><.001</td>
</tr>
<tr>
<td>Procedure year</td>
<td>0.83</td>
<td>0.63-1.08</td>
<td>.17</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>2.11</td>
<td>0.37-12.12</td>
<td>.4</td>
</tr>
<tr>
<td>Age</td>
<td>0.95</td>
<td>0.84-1.08</td>
<td>.45</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>0.69</td>
<td>0.11-4.14</td>
<td>.68</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>0.83</td>
<td>0.02-34.63</td>
<td>.92</td>
</tr>
</tbody>
</table>

CI, Confidence interval; OR, odds ratio.
Management of type 1 and 2 EL: own experience

- **High technical and clinical success rates**
 - Primary success: 88.9% / Secondary success: 94.4%
 - Permanent failure in one case

- **Role of additional coils**
 - Anchoring not necessary, even with high / turbulent flow
 - For occlusion of outflow vessels
 - Not to fill the main cavity
 - Maybe cause of revascularization

- **Drawbacks**
 - Time consuming
 - Injection pain: prepare patient
 - Pain stops when outflow vessels are occluded
 - CT beam hardening artefacts caused by Onyx
Summary: endoleaks

• **Type 1 endoleaks may require prompt therapy**
 – *Re-Stenting / ballooning gold standard*
 – *Endovascular embolization as a new promising treatment option*

• **Type 2 endoleaks**
 – *Intensive follow-up, combined with stop of antiplatelet therapy if possible (40% occlude spontaneously)*
 – *Otherwise endovascular or percutaneous embolization is a safe treatment alternative*
 • *Percutaneous embolization for lumbar artery fed endoleaks or if endovascular approach failed*
Conclusion: endoleak treatment with onyx

- **Liquid embolic agent Onyx, +/- aortic stentgrafting is**
 - Safe, fast, easy to use
 - High technical and clinical success rates
 - lower recanalization rate than other embolics
 - Tantalum causes CT artifacts, may complicate CT surveillance
 - Solution: Onyx light with less Tantalum content
 - Durability remains unknown
- **Leads not always to sac shrinkage!**
Thank you very much for your attention!

CORRESPONDING AUTHOR:
Priv.-Doz. Dr. med. Marcus Treitl, EBIR, EDIR, MBA
Hospitals of the Ludwig-Maximilians-University of Munich
Institute for Clinical Radiology

Fon: +49-89-44005-9240
E-Mail: mtreitl@med.uni-muenchen.de
Internet: www.klinikum.uni-muenchen.de
www.radiologie-lmu.de
Type I and II endoleak management

Marcus Treitl, MD, EBIR