In-vivo validation of a non-invasive MR-based patient specific pressure model to determine the severity of equivocal iliac artery obstructions and the need for revascularization

The DETECT-PAD study

S.G.H. Heinen MSc PDEng 1,3
J.P.P.M. de Vries MD PhD1, D.A.F. van den Heuvel MD2
W. Hubert MSc PhD3 & Prof. F.N. van de Vosse MSc PhD3

1 Department of vascular surgery; 2 Department of interventional radiology; 3 Eindhoven University of Technology
Disclosure

Speaker name: S.G.H. Heinen

I have the following potential conflicts of interest to report:

- Consulting
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s)

I do not have any potential conflict of interest
Problem

• **Equivocal iliac artery stenoses (50-75%)**
 – Hard to predict clinical relevance
 – No non-invasive tools to predict pressure drop

• **Physiology**
 Lumen area reduction versus pressure gradient \[^1\]
 – Pearson Correlation (0.01-0.17)
 Lumen area reduction not sufficient to diagnose patients with equivocal iliac artery stenoses (50-75%)

Invasive pressure measurements

- **Advantages**
 Gold standard to determine significance of stenosis.

- **Disadvantages**
 Invasive
 Time consuming
 Expensive
Solution

Non-invasive, patient specific, predictive model to determine pressure drop over equivocal stenosis
Physical Model

Patient-specific Physiological data

Physics \([1,2]\)

I. Conservation of mass
II. Conservation of momentum
III. Energy loss due to turbulence

Prediction patient-specific pressure drop

Physical Model

Physics $^{[1,2]}$

I. Conservation of mass
II. Conservation of momentum
III. Energy loss due to turbulence

\[
\begin{align*}
\frac{\partial A}{\partial t} + \frac{\partial q}{\partial z} + \Psi &= 0 \\
\frac{\partial q}{\partial t} + \frac{\partial \gamma}{\partial z} + \frac{A}{\rho} \frac{\partial \rho}{\partial z} &= \frac{2\pi a_0}{\rho} R_w \\
\frac{\partial q}{\partial t} + \frac{I_w}{I_u} q + \frac{I_r}{I_u} q |q| + \frac{I_s}{I_u} \frac{\partial \rho}{\partial z} + \frac{I_w}{I_u} q &= 0
\end{align*}
\]
DETECT-PAD

• **Aim = Validation**
 Comparison of the predicted pressure drop (model-based) with in-vivo measurements in rest and during reactive hyperemia (NTG)

• **N = 30**

• **Angiography**
 PTA if hyperemic pressure gradient > 10 mmHg
Inclusion criteria

- Symptomatic, chronic atheroslerotic lesions of the common iliac artery and/or external iliac artery
- Single or multiple equivocal (50-75%) stenoses (US)
- Rutherford class 1-6
DETECT-PAD Protocol

• Standard of care
 – Treadmill test
 – Duplex Ultrasound
 – CE-MRA
 – Blood pressure

• Non-invasive additional measurements
 – MR-Flow

• Additional during DSA/PTA
 – Pressure measurements (XT ComboWire, Volcano Inc.)
Patient #1: Model validation (predicted pressure)

Rest
- Proximal (P1): 97.4 mmHg
- Distal (P2): 96.4 mmHg
- Gradient (P1-P2): 1.0 mmHg

Hyperemia
- Proximal (P1): 95.7 mmHg
- Distal (P2): 92.5 mmHg
- Gradient (P1-P2): 3.2 mmHg
Patient #1: Angiography (in-vivo pressure)

Rest
- Proximal (1) : 92.4 mmHg
- Distal (5) : 91.2 mmHg
- Gradient (1-5) : 1.2 mmHg

Hyperemia
- Proximal (1) : 89.4 mmHg
- Distal (5) : 81.6 mmHg
- Gradient (1-5) : 7.8 mmHg
Results (rest)
Results (hyperemia)

* Rest measurement
Conclusion

• Pressure drop \neq lumen area reduction
• The current model first to predict pressure drop in PAD
• Predictive value for yes/no treatment 14/15 (93%)
• Improvements:
 – Inflow and outflow conditions
 – Refinement of clinical input data
• Inclusion patients 16-30 (Q1-2 2016)
In-vivo validation of a non-invasive MR-based patient specific pressure model to determine the severity of equivocal iliac artery obstructions and the need for revascularization

The DETECT-PAD study

S.G.H. Heinen MSc PDEng ¹,³

J.P.P.M. de Vries MD PhD¹, D.A.F. van den Heuvel MD²
W. Hubert MSc PhD³ & Prof. F.N. van de Vosse MSc PhD³

¹ Department of vascular surgery; ² Department of interventional radiology; ³ Eindhoven University of Technology