Anaconda™ Stentgraft in short infrarenal necks: From imaging to clinical results

Robbert Meerwaldt MD PhD FEBVS
Dept Vascular Surgery
Medisch Spectrum Twente, the Netherlands
Conflicts of interest:
Proctor Vascutek™
Short infrarenal neck
How to achieve?

Provide insight in the relation between stent and vessel motion and the success or failure of stent fixation and sealing.
How to achieve?

Provide insight in the relation between stent and vessel motion and the success or failure of stent fixation and sealing.

Dynamic model Anaconda from 4D CT data

2 days after EVAR
What do we measure?

- Prospective study 20 patients
- Anaconda stentgraft
- Heartbeat induced motion
 - Pulsatility
- Motion over time
 - Expansion
 - Migration
Results: Progression of ‘Ring Oversize’

Top Ring Oversized state vs time

2nd Ring Oversized state vs time

includes renal stent
Ring dynamics one patient

<table>
<thead>
<tr>
<th>Top ring</th>
<th>2nd ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak to peak</td>
<td>peak to peak</td>
</tr>
<tr>
<td>valley to valley</td>
<td>valley to valley</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>1M</td>
<td>1M</td>
</tr>
<tr>
<td>6M</td>
<td>6M</td>
</tr>
<tr>
<td>12M</td>
<td>12M</td>
</tr>
</tbody>
</table>

OLB 28

‘Migration’ 12M = 4.6 mm
Ring dynamics vs aortic wall
Conclusion

• Non-invasive contrast agent free method to monitor the stentgraft in 4D: what is happening over time?

• The oversized state drops but seems to ‘stabilize’

• Challenge is to predict failure → tailored follow-up
Conclusion