Reconstruction of the aortic bifurcation with balloon expandable covered stents

P. Goverde MD, J. Bontink MD, K. Lauwers MD, K. Taeymans MD, P. Verbruggen MD
Vascular Clinic ZNA, Antwerp, Belgium

M. Reijnen MD Phd, F. Grimme MD, J. Van Oostayen MD
Rijnstate Hospital, Arnhem, The Netherlands
Speaker’s name: Peter Goverde

- I have the following potential conflicts of interest to report:
 - Consulting:
 - Abbott Vascular; Angioslide; Atrium Maquet Getinge group; Bard Peripheral Vascular; Cardionovum; Cordis Cardinal Health; IMDS; Ivascular; Stille; Veyran; Ziehm Imaging
How to treat?

How to prevent?
Aortoiliac Occlusive Lesions
Aortoiliac Occlusive Lesions
Aortoiliac Occlusive Lesions

- Current standard for complex occlusive aorto-iliac lesions is open surgical repair
- 5-year patency rate: 87 - 91%
- Complication rate: 8 - 12%
- Mortality rate: 3 - 4%

Type D lesions:
- Infra-renal aortoiliac occlusion
- Diffuse disease involving the aorta and both iliac arteries requiring treatment
- Diffuse multiple stenoses involving the unilateral CIA, EIA, and CFA
- Unilateral occlusions of both CIA and EIA
- Bilateral occlusions of EIA
- Iliac stenoses in patients with AAA requiring treatment and not amenable to endograft placement or other lesions requiring open aortic or iliac surgery
Open versus endovascular approach

Ask your patient: what would you choose?
Extensive aortoiliac disease: endovascular treatment options

- Double barrel bare metal stents ± stents in the renal /visceral arteries

- Chimney stents + stenting of juxtarenal aortic occlusion

- Covered endovascular reconstruction: CERAB (+/- chimney or branch)
Lesions of the aortic bifurcation & kissing (covered) stents: death space issue
An alternative technique to reconstruct the aortic bifurcation with 3 Atrium – Maquet V12 covered stents for extensive occlusive disease

Advantages of covered stents

- May reduce the impact of radial mismatch
- May reduce the risk on embolization
- Prevention of in-stent re-stenosis
- May reduce the risk on rupture
Why using balloon expandable covered stents?

due to its specific characteristics:

• low profile
• double ePTFE layer
• easy and accurate deployment
• radial force
• Dog-bone type inflation of balloon
• **diameter adaptiveness**
 (postdilation to a larger diameter is possible without damaging the stent structure and ePTFE)
Covered stent
Adaptiveness

1 stent V12 LD (12x 61 mm) = 4 different shapes

12mm

16mm

18mm

20mm
RESULTS

– **In vitro testing**: in collaboration with
 - University of Twente, Enschede, The Netherlands; E. Groot Jebbink (J Vasc Surg, 2014)

– **In vivo**
 - Vascular Clinic ZNA, Antwerp, Belgium
 - Rijnstate Hospital, Arnhem, The Netherlands

“The Science behind the Technology”
Results: in vitro

- **CERAB configuration:**
 - Related to the best geometrical conditions
 - Low radial mismatch
 - High stent conformation
 - Lower mismatch area
 - Lowest total mismatch volume or dead space
Results: in vitro, flow visualization

Dye injection
Particle Image Velocimetry measurements:
Mostly laminar flow throughout the cardiac cycle
Technical considerations
Different possible CERAB configurations with BX stents

In the FUTURE

Courtesy of Peter Goverde MD
Different possible CERAB configurations

- CERAB made of:
 - Main body:
 - V12 Maquet Getinge Bx
 - Diameters 10-12-14-16 mm
 - Length:
 - 10: 38 & 59 mm
 - 12-14-16: 41 & 61 mm
 - Legs:
 - V12 Maquet Getinge Bx
 - Diameters 6 to 9 mm
 - Length: 38 & 59 mm
- Can be postdilated
- Cave shortening

Courtesy of Peter Goverde MD
Different possible CERAB configurations

- **CERAB made of:**
 - **Main body:**
 - LifeStream Bard PV Bx
 - **Diameters** 10-12 mm
 - Can been postdilated to 16 mm
 - **Length:**
 - 38 & 58 mm
 - **Legs:**
 - LifeStream Bard PV Bx
 - **Diameters** 6 to 9 mm
 - **Length:** 37 (38 for 9mm) & 58 mm
 - Can be postdilated
 - Less shortening

Courtesy of Peter Goverde MD
Different possible CERAB configurations

• Future CERAB made of:
 • Main body:
 – **BeGraft Aortic Bentley Bx**
 – **Diameters 12-14-16-18-20-22-24mm**
 – Largest Can been postdilated up to max 28 mm
 – **Length**: 19-28-mm
 • Legs:
 – **BeGraft Bentley Bx Bx**
 – **Diameters 6 to 10mm**
 – **Length**: 28 (27)-38(37)-58(57)
• Can be postdilated
• Less shortening

Courtesy of Peter Goverde MD & Bentley InnoMed (booth 13)
Results CERAB: Antwerp and Arnhem

- February 2009 – March 2014
- 103 elective patients
- Acute cases (n=5) and chimney’s (n=5) excluded
- 61 (36-85) years
- Rutherford classification:
 - 1 (n=1) 1%
 - 2 (n=0) 0%
 - 3 (n=64) 62%
 - 4 (n=20) 19%
 - 5 (n=17) 17%
 - 6 (n=1) 1%
- Technical success 95%

Technical Results CERAB: Antwerp and Arnhem

<table>
<thead>
<tr>
<th>Aortic stent length (mm)</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>5 (5.1%)</td>
</tr>
<tr>
<td>38</td>
<td>1 (1.0%)</td>
</tr>
<tr>
<td>41</td>
<td>64 (64.6%)</td>
</tr>
<tr>
<td>61</td>
<td>28 (28.2%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1 (1.0%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aortic stent diameter (mm)</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1 (1.0%)</td>
</tr>
<tr>
<td>12</td>
<td>95 (96.0%)</td>
</tr>
<tr>
<td>14</td>
<td>2 (2.0%)</td>
</tr>
<tr>
<td>16</td>
<td>1 (1.0%)</td>
</tr>
</tbody>
</table>
Technical Results CERAB: Antwerp and Arnhem

<table>
<thead>
<tr>
<th>Iliac artery stent length (mm)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td>80</td>
<td>83</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iliac artery stent diameter (mm)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of stents used</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>
Results CERAB:
Antwerp and Arnhem

<table>
<thead>
<tr>
<th></th>
<th>6 m</th>
<th>12 m</th>
<th>18 m</th>
<th>24 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary patency</td>
<td>91.5</td>
<td>87.3</td>
<td>87.3</td>
<td>82.3</td>
</tr>
<tr>
<td>Secondary patency</td>
<td>97.8</td>
<td>95.0</td>
<td>95.0</td>
<td>85.0</td>
</tr>
<tr>
<td>Freedom from TLR</td>
<td>93.7</td>
<td>88.2</td>
<td>88.2</td>
<td>85.6</td>
</tr>
</tbody>
</table>

- **Median follow-up**: 19 months
- **Limb salvage**: 100%
CERAB & Complex Aortic Occlusive Disease

2 chimney, V12 Atrium Maquet

P. Goverde MD, Antwerp Belgium/ A. Schmidt MD, Leipzig Germany
CERAB & Complex Aortic Occlusive Disease

Andrew Holden, MD: Auckland City Hospital, Auckland NZ
CERAB & Complex Aortic Occlusive Disease

Used stents:
- 1 x V12 LD 12 x 41 mm
- 3 x V12 6 x 59 mm
- 2 x V12 7 x 59 mm
- 2 x Gore Viabahn 6 x 150 mm

P. Goverde MD, Antwerp Belgium
CERAB & Complex Aortic Occlusive Disease: iliac Re- Re- stent occlusion
Conclusions

- Covered endovascular reconstruction of the aortic bifurcation (CERAB) is safe and feasible and seems to be a valid alternative for surgery and/or kissing stents

- Exploration of the chimney-CERAB, patient selection and the economic benefit may further expand the indications of this technique
Thank you for your attention
Reconstruction of the aortic bifurcation with balloon expandable covered stents

P. Goverde MD,
J. Bontink MD, K. Lauwers MD, K. Taeymans MD, P. Verbruggen MD
Vascular Clinic ZNA, Antwerp, Belgium

M. Reijnen MD PhD, F. Grimme MD, J. Van Oostayen MD
Rijnstate Hospital, Arnhem, The Netherlands